Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Front Immunol ; 14: 1211388, 2023.
Article in English | MEDLINE | ID: covidwho-20240033

ABSTRACT

Controlled Human Infection Models (CHIMs) involve deliberately exposing healthy human volunteers to a known pathogen, to allow the detailed study of disease processes and evaluate methods of treatment and prevention, including next generation vaccines. CHIMs are in development for both tuberculosis (TB) and Covid-19, but challenges remain in their ongoing optimisation and refinement. It would be unethical to deliberately infect humans with virulent Mycobacteria tuberculosis (M.tb), however surrogate models involving other mycobacteria, M.tb Purified Protein Derivative or genetically modified forms of M.tb either exist or are under development. These utilise varying routes of administration, including via aerosol, per bronchoscope or intradermal injection, each with their own advantages and disadvantages. Intranasal CHIMs with SARS-CoV-2 were developed against the backdrop of the evolving Covid-19 pandemic and are currently being utilised to both assess viral kinetics, interrogate the local and systemic immunological responses post exposure, and identify immune correlates of protection. In future it is hoped they can be used to assess new treatments and vaccines. The changing face of the pandemic, including the emergence of new virus variants and increasing levels of vaccination and natural immunity within populations, has provided a unique and complex environment within which to develop a SARS-CoV-2 CHIM. This article will discuss current progress and potential future developments in CHIMs for these two globally significant pathogens.


Subject(s)
COVID-19 , Mycobacterium tuberculosis , Tuberculosis , Humans , Pandemics , SARS-CoV-2 , Tuberculosis/prevention & control
2.
Psychol Med ; : 1-11, 2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-2259584

ABSTRACT

BACKGROUND: When vaccination depends on injection, it is plausible that the blood-injection-injury cluster of fears may contribute to hesitancy. Our primary aim was to estimate in the UK adult population the proportion of COVID-19 vaccine hesitancy explained by blood-injection-injury fears. METHODS: In total, 15 014 UK adults, quota sampled to match the population for age, gender, ethnicity, income and region, took part (19 January-5 February 2021) in a non-probability online survey. The Oxford COVID-19 Vaccine Hesitancy Scale assessed intent to be vaccinated. Two scales (Specific Phobia Scale-blood-injection-injury phobia and Medical Fear Survey-injections and blood subscale) assessed blood-injection-injury fears. Four items from these scales were used to create a factor score specifically for injection fears. RESULTS: In total, 3927 (26.2%) screened positive for blood-injection-injury phobia. Individuals screening positive (22.0%) were more likely to report COVID-19 vaccine hesitancy compared to individuals screening negative (11.5%), odds ratio = 2.18, 95% confidence interval (CI) 1.97-2.40, p < 0.001. The population attributable fraction (PAF) indicated that if blood-injection-injury phobia were absent then this may prevent 11.5% of all instances of vaccine hesitancy, AF = 0.11; 95% CI 0.09-0.14, p < 0.001. COVID-19 vaccine hesitancy was associated with higher scores on the Specific Phobia Scale, r = 0.22, p < 0.001, Medical Fear Survey, r = 0.23, p = <0.001 and injection fears, r = 0.25, p < 0.001. Injection fears were higher in youth and in Black and Asian ethnic groups, and explained a small degree of why vaccine hesitancy is higher in these groups. CONCLUSIONS: Across the adult population, blood-injection-injury fears may explain approximately 10% of cases of COVID-19 vaccine hesitancy. Addressing such fears will likely improve the effectiveness of vaccination programmes.

3.
Psychol Med ; : 1-15, 2020 Dec 11.
Article in English | MEDLINE | ID: covidwho-2259583

ABSTRACT

BACKGROUND: Our aim was to estimate provisional willingness to receive a coronavirus 2019 (COVID-19) vaccine, identify predictive socio-demographic factors, and, principally, determine potential causes in order to guide information provision. METHODS: A non-probability online survey was conducted (24th September-17th October 2020) with 5,114 UK adults, quota sampled to match the population for age, gender, ethnicity, income, and region. The Oxford COVID-19 vaccine hesitancy scale assessed intent to take an approved vaccine. Structural equation modelling estimated explanatory factor relationships. RESULTS: 71.7% (n=3,667) were willing to be vaccinated, 16.6% (n=849) were very unsure, and 11.7% (n=598) were strongly hesitant. An excellent model fit (RMSEA=0.05/CFI=0.97/TLI=0.97), explaining 86% of variance in hesitancy, was provided by beliefs about the collective importance, efficacy, side-effects, and speed of development of a COVID-19 vaccine. A second model, with reasonable fit (RMSEA=0.03/CFI=0.93/TLI=0.92), explaining 32% of variance, highlighted two higher-order explanatory factors: 'excessive mistrust' (r=0.51), including conspiracy beliefs, negative views of doctors, and need for chaos, and 'positive healthcare experiences' (r=-0.48), including supportive doctor interactions and good NHS care. Hesitancy was associated with younger age, female gender, lower income, and ethnicity, but socio-demographic information explained little variance (9.8%). Hesitancy was associated with lower adherence to social distancing guidelines. CONCLUSIONS: COVID-19 vaccine hesitancy is relatively evenly spread across the population. Willingness to take a vaccine is closely bound to recognition of the collective importance. Vaccine public information that highlights prosocial benefits may be especially effective. Factors such as conspiracy beliefs that foster mistrust and erode social cohesion will lower vaccine up-take.

4.
EBioMedicine ; 79: 103993, 2022 May.
Article in English | MEDLINE | ID: covidwho-1783294

ABSTRACT

The Mycobacterium bovis BCG vaccine was first used in 1921, but has not controlled the global spread of tuberculosis (TB). There are still no new licensed tuberculosis vaccines, although there much active research and a vaccine development pipeline, with vaccines designed to prevent infection, prevent disease, or accelerate TB treatment. These vaccines are of different types, and designed to replace BCG, or to boost immunity following BCG vaccination. This viewpoint discusses why, when it has been possible to develop new vaccines for SARS-CoV-2 so quickly, it is taking so long to develop new tuberculosis vaccines.


Subject(s)
COVID-19 , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Vaccines , BCG Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Tuberculosis Vaccines/therapeutic use , Vaccination
5.
Health Res Policy Syst ; 20(1): 24, 2022 Feb 19.
Article in English | MEDLINE | ID: covidwho-1779651

ABSTRACT

With over 5 million COVID-19 deaths at the time of writing, the response of research leaders was and is critical to developing treatments to control the global pandemic. As clinical research leaders urgently repurposed existing research programmes and resources towards the COVID-19 pandemic, there is an opportunity to reflect on practices observed in Biomedical Research Centre (BRC) settings. BRCs are partnerships between leading National Health Service organizations and universities in England conducting translational research for patient benefit funded by the National Institute for Health Research (NIHR). Oxford BRC-supported researchers have led the rapid set-up of numerous COVID-19 research studies at record speed with global impact. However, the specific contribution of BRCs to the COVID-19 pandemic in the literature is sparse. Firstly, we reflect on the strategic work of clinical research leaders, creating resilient NIHR research infrastructure to facilitate rapid COVID-19 research. Secondly, we discuss how COVID-19 rapid research exemplars supported by Oxford BRC illustrate "capacity", "readiness" and "capability" at an organizational and individual level to respond to the global pandemic. Rapid response research in turbulent environments requires strategic organizational leadership to create resilient infrastructure and resources. The rapid research exemplars from the Oxford BRC illustrate capability and capacity at an organizational and individual level in a dynamic environment to respond during the COVID-19 public health challenge. This response was underpinned by swift adaptation and repurposing of existing research resources and expertise by the Oxford BRC to deliver rapid research to address different aspects of COVID-19.


Subject(s)
Biomedical Research , COVID-19 , Humans , Pandemics , SARS-CoV-2 , State Medicine
6.
Nat Med ; 28(5): 1031-1041, 2022 05.
Article in English | MEDLINE | ID: covidwho-1773989

ABSTRACT

Since its emergence in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused hundreds of millions of cases and continues to circulate globally. To establish a novel SARS-CoV-2 human challenge model that enables controlled investigation of pathogenesis, correlates of protection and efficacy testing of forthcoming interventions, 36 volunteers aged 18-29 years without evidence of previous infection or vaccination were inoculated with 10 TCID50 of a wild-type virus (SARS-CoV-2/human/GBR/484861/2020) intranasally in an open-label, non-randomized study (ClinicalTrials.gov identifier NCT04865237 ; funder, UK Vaccine Taskforce). After inoculation, participants were housed in a high-containment quarantine unit, with 24-hour close medical monitoring and full access to higher-level clinical care. The study's primary objective was to identify an inoculum dose that induced well-tolerated infection in more than 50% of participants, with secondary objectives to assess virus and symptom kinetics during infection. All pre-specified primary and secondary objectives were met. Two participants were excluded from the per-protocol analysis owing to seroconversion between screening and inoculation, identified post hoc. Eighteen (~53%) participants became infected, with viral load (VL) rising steeply and peaking at ~5 days after inoculation. Virus was first detected in the throat but rose to significantly higher levels in the nose, peaking at ~8.87 log10 copies per milliliter (median, 95% confidence interval (8.41, 9.53)). Viable virus was recoverable from the nose up to ~10 days after inoculation, on average. There were no serious adverse events. Mild-to-moderate symptoms were reported by 16 (89%) infected participants, beginning 2-4 days after inoculation, whereas two (11%) participants remained asymptomatic (no reportable symptoms). Anosmia or dysosmia developed more slowly in 15 (83%) participants. No quantitative correlation was noted between VL and symptoms, with high VLs present even in asymptomatic infection. All infected individuals developed serum spike-specific IgG and neutralizing antibodies. Results from lateral flow tests were strongly associated with viable virus, and modeling showed that twice-weekly rapid antigen tests could diagnose infection before 70-80% of viable virus had been generated. Thus, with detailed characterization and safety analysis of this first SARS-CoV-2 human challenge study in young adults, viral kinetics over the course of primary infection with SARS-CoV-2 were established, with implications for public health recommendations and strategies to affect SARS-CoV-2 transmission. Future studies will identify the immune factors associated with protection in those participants who did not develop infection or symptoms and define the effect of prior immunity and viral variation on clinical outcome.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Kinetics , Treatment Outcome , Viral Load , Young Adult
7.
Vaccine ; 40(26): 3484-3489, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1740252

ABSTRACT

This report of a joint World Health Organization (WHO) and United Kingdom (UK) Health Research Authority (HRA) workshop discusses the ethics review of the first COVID-19 human challenge studies, undertaken in the midst of the pandemic. It reviews the early efforts of international and national institutions to define the ethical standards required for COVID-19 human challenge studies and create the frameworks to ensure rigorous and timely review of these studies. This report evaluates the utility of the WHO's international guidance document Key criteria for the ethical acceptability of COVID-19 human challenge studies (WHO Key Criteria) as a practical resource for the ethics review of COVID-19 human challenge studies. It also assesses the UK HRA's approach to these complex ethics reviews, including the formation of a Specialist Ad-Hoc Research Ethics Committee (REC) for COVID-19 Human Challenge Studies to review all current and future COVID-19 human challenge studies. In addition, the report outlines the reflections of REC members and researchers regarding the ethics review process of the first COVID-19 human challenge studies. Finally, it considers the potential ongoing scientific justification for COVID-19 human challenge studies, particularly in relation to next-generation vaccines and optimisation of vaccination schedules. Overall, there was broad agreement that the WHO Key Criteria represented an international consensus document that played a powerful role in setting norms and delineating the necessary conditions for the ethical acceptability of COVID-19 human challenge studies. Workshop members suggested that the WHO Key Criteria could be practically implemented to support researchers and ethics reviewers, including in the training of ethics committee members. In future, a wider audience may be engaged by the original document and potential additional materials, informed by the experiences of those involved in the first COVID-19 human challenge studies outlined in this document.


Subject(s)
COVID-19 , Ethical Review , COVID-19/prevention & control , Ethics Committees, Research , Humans , Pandemics/prevention & control , World Health Organization
8.
Frontiers in immunology ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1695160

ABSTRACT

The tuberculosis vaccine, Bacille Calmette-Guerin (BCG), also affords protection against non-tuberculous diseases attributable to heterologous immune mechanisms such as trained innate immunity, activation of non-conventional T-cells, and cross-reactive adaptive immunity. Aerosol vaccine delivery can target immune responses toward the primary site of infection for a respiratory pathogen. Therefore, we hypothesised that aerosol delivery of BCG would enhance cross-protective action against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and be a deployable intervention against coronavirus disease 2019 (COVID-19). Immune parameters were monitored in vaccinated and unvaccinated rhesus macaques for 28 days following aerosol BCG vaccination. High-dose SARS-CoV-2 challenge was applied by intranasal and intrabronchial instillation and animals culled 6–8 days later for assessment of viral, disease, and immunological parameters. Mycobacteria-specific cell-mediated immune responses were detected following aerosol BCG vaccination, but SARS-CoV-2-specific cellular- and antibody-mediated immunity was only measured following challenge. Early secretion of cytokine and chemokine markers associated with the innate cellular and adaptive antiviral immune response was detected following SARS-CoV-2 challenge in vaccinated animals, at concentrations that exceeded titres measured in unvaccinated macaques. Classical CD14+ monocytes and Vδ2 γδ T-cells quantified by whole-blood immunophenotyping increased rapidly in vaccinated animals following SARS-CoV-2 challenge, indicating a priming of innate immune cells and non-conventional T-cell populations. However, viral RNA quantified in nasal and pharyngeal swabs, bronchoalveolar lavage (BAL), and tissue samples collected at necropsy was equivalent in vaccinated and unvaccinated animals, and in-life CT imaging and histopathology scoring applied to pulmonary tissue sections indicated that the disease induced by SARS-CoV-2 challenge was comparable between vaccinated and unvaccinated groups. Hence, aerosol BCG vaccination did not induce, or enhance the induction of, SARS-CoV-2 cross-reactive adaptive cellular or humoral immunity, although an influence of BCG vaccination on the subsequent immune response to SARS-CoV-2 challenge was apparent in immune signatures indicative of trained innate immune mechanisms and primed unconventional T-cell populations. Nevertheless, aerosol BCG vaccination did not enhance the initial clearance of virus, nor reduce the occurrence of early disease pathology after high dose SARS-CoV-2 challenge. However, the heterologous immune mechanisms primed by BCG vaccination could contribute to the moderation of COVID-19 disease severity in more susceptible species following natural infection.

9.
Hum Vaccin Immunother ; 18(1): 2004808, 2022 12 31.
Article in English | MEDLINE | ID: covidwho-1692316

ABSTRACT

The speed of COVID-19 vaccine development has been identified as a central concern contributing to hesitancy in acceptance. We conducted qualitative interviews to gain a greater understanding into these concerns and to identify what might address them. Twelve qualitative interviews were conducted with participants identifying as hesitant for COVID-19 vaccination and reporting concern about the speed of vaccine development. Interpretative Phenomenological Analysis (IPA) was used. Concerns about speed comprised the linked themes of i) difficulty understanding the pace, and, ii) worry about the implications for vaccine safety. Uncertainties concerning the pandemic led to a notable desire for credible and understandable information regarding the vaccines, which many participants felt was not available. Four routes to resolving uncertainty about whether to be vaccinated were identified. First, waiting for more information about the vaccines, such as about their contents and impact on transmission. Second, a growing perception that the vaccines must be safe given the large numbers already vaccinated. Third, viewing the vaccines as necessary - even if unappealing - for ending the pandemic. Finally, a feeling that there would be no choice but to have a vaccine. Examples of what might reduce hesitancy were given, including interviews with vaccine developers and knowing others of similar age having safely been vaccinated. The pace of development broke expectations set earlier in the pandemic. This was interpreted negatively due to a perceived lack of credible information. Most participants could envisage ways their concerns could be resolved, enough for them to have a vaccine.


Subject(s)
COVID-19 , Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination , Vaccine Development
10.
Lancet Respir Med ; 10(3): 255-266, 2022 03.
Article in English | MEDLINE | ID: covidwho-1586183

ABSTRACT

BACKGROUND: Dysregulated inflammation is associated with poor outcomes in COVID-19. We aimed to assess the efficacy of namilumab (a granulocyte-macrophage colony stimulating factor inhibitor) and infliximab (a tumour necrosis factor inhibitor) in hospitalised patients with COVID-19, to prioritise agents for phase 3 trials. METHODS: In this randomised, multicentre, multi-arm, multistage, parallel-group, open-label, adaptive, phase 2, proof-of-concept trial (CATALYST), we recruited patients (aged ≥16 years) admitted to hospital with COVID-19 pneumonia and C-reactive protein (CRP) concentrations of 40 mg/L or greater, at nine hospitals in the UK. Participants were randomly assigned with equal probability to usual care or usual care plus a single intravenous dose of namilumab (150 mg) or infliximab (5 mg/kg). Randomisation was stratified by care location within the hospital (ward vs intensive care unit [ICU]). Patients and investigators were not masked to treatment allocation. The primary endpoint was improvement in inflammation, measured by CRP concentration over time, analysed using Bayesian multilevel models. This trial is now complete and is registered with ISRCTN, 40580903. FINDINGS: Between June 15, 2020, and Feb 18, 2021, we screened 299 patients and 146 were enrolled and randomly assigned to usual care (n=54), namilumab (n=57), or infliximab (n=35). For the primary outcome, 45 patients in the usual care group were compared with 52 in the namilumab group, and 29 in the usual care group were compared with 28 in the infliximab group. The probabilities that the interventions were superior to usual care alone in reducing CRP concentration over time were 97% for namilumab and 15% for infliximab; the point estimates for treatment-time interactions were -0·09 (95% CI -0·19 to 0·00) for namilumab and 0·06 (-0·05 to 0·17) for infliximab. 134 adverse events occurred in 30 (55%) of 55 patients in the namilumab group compared with 145 in 29 (54%) of 54 in the usual care group. 102 adverse events occurred in 20 (69%) of 29 patients in the infliximab group compared with 112 in 17 (50%) of 34 in the usual care group. Death occurred in six (11%) patients in the namilumab group compared with ten (19%) in the usual care group, and in four (14%) in the infliximab group compared with five (15%) in the usual care group. INTERPRETATION: Namilumab, but not infliximab, showed proof-of-concept evidence for reduction in inflammation-as measured by CRP concentration-in hospitalised patients with COVID-19 pneumonia. Namilumab should be prioritised for further investigation in COVID-19. FUNDING: Medical Research Council.


Subject(s)
COVID-19 Drug Treatment , Adolescent , Antibodies, Monoclonal, Humanized , Bayes Theorem , Humans , Infliximab/therapeutic use , SARS-CoV-2 , Standard of Care , Treatment Outcome
12.
BMJ Leader ; 4(2):96-97, 2020.
Article in English | ProQuest Central | ID: covidwho-1317040

ABSTRACT

Correspondence to Dr Anthony Robert Berendt, Oxford, UK;a.berendt@ntlworld.com Biography Helen McShane is currently Director of the Oxford National Institute for Health Research Biomedical Research Centre;Professor of Vaccinology at Oxford University;Deputy Head (Translation and Personnel), Medical Sciences Division;and an Honorary Consultant Physician in Infectious Diseases. Since 2001, she has been funded by the Wellcome Trust (as a Clinician Scientist and then two Senior Fellowships) to lead the tuberculosis (TB) vaccine research group at the University of Oxford. First and foremost, are there any key leadership messages you want to get out to our readership? [...]my main roles, and those which have come to the forefront during this pandemic, are first as the Director of the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC),1 and second as Deputy Head of the Medical Sciences Division at the University of Oxford, with responsibility for translation (of laboratory research discoveries into clinical practice).

13.
Lancet Public Health ; 6(6): e416-e427, 2021 06.
Article in English | MEDLINE | ID: covidwho-1272814

ABSTRACT

BACKGROUND: The effectiveness of the COVID-19 vaccination programme depends on mass participation: the greater the number of people vaccinated, the less risk to the population. Concise, persuasive messaging is crucial, particularly given substantial levels of vaccine hesitancy in the UK. Our aim was to test which types of written information about COVID-19 vaccination, in addition to a statement of efficacy and safety, might increase vaccine acceptance. METHODS: For this single-blind, parallel-group, randomised controlled trial, we aimed to recruit 15 000 adults in the UK, who were quota sampled to be representative. Participants were randomly assigned equally across ten information conditions stratified by level of vaccine acceptance (willing, doubtful, or strongly hesitant). The control information condition comprised the safety and effectiveness statement taken from the UK National Health Service website; the remaining conditions addressed collective benefit, personal benefit, seriousness of the pandemic, and safety concerns. After online provision of vaccination information, participants completed the Oxford COVID-19 Vaccine Hesitancy Scale (outcome measure; score range 7-35) and the Oxford Vaccine Confidence and Complacency Scale (mediation measure). The primary outcome was willingness to be vaccinated. Participants were analysed in the groups they were allocated. p values were adjusted for multiple comparisons. The study was registered with ISRCTN, ISRCTN37254291. FINDINGS: From Jan 19 to Feb 5, 2021, 15 014 adults were recruited. Vaccine hesitancy had reduced from 26·9% the previous year to 16·9%, so recruitment was extended to Feb 18 to recruit 3841 additional vaccine-hesitant adults. 12 463 (66·1%) participants were classified as willing, 2932 (15·6%) as doubtful, and 3460 (18·4%) as strongly hesitant (ie, report that they will avoid being vaccinated for as long as possible or will never get vaccinated). Information conditions did not alter COVID-19 vaccine hesitancy in those willing or doubtful (adjusted p values >0·70). In those strongly hesitant, COVID-19 vaccine hesitancy was reduced, in comparison to the control condition, by personal benefit information (mean difference -1·49, 95% CI -2·16 to -0·82; adjusted p=0·0015), directly addressing safety concerns about speed of development (-0·91, -1·58 to -0·23; adjusted p=0·0261), and a combination of all information (-0·86, -1·53 to -0·18; adjusted p=0·0313). In those strongly hesitant, provision of personal benefit information reduced hesitancy to a greater extent than provision of information on the collective benefit of not personally getting ill (-0·97, 95% CI -1·64 to -0·30; adjusted p=0·0165) or the collective benefit of not transmitting the virus (-1·01, -1·68 to -0·35; adjusted p=0·0150). Ethnicity and gender were found to moderate information condition outcomes. INTERPRETATION: In the approximately 10% of the population who are strongly hesitant about COVID-19 vaccines, provision of information on personal benefit reduces hesitancy to a greater extent than information on collective benefits. Where perception of risk from vaccines is most salient, decision making becomes centred on the personal. As such, messaging that stresses the counterbalancing personal benefits is likely to prove most effective. The messaging from this study could be used in public health communications. Going forwards, the study highlights the need for future health campaigns to engage with the public on the terrain that is most salient to them. FUNDING: National Institute for Health Research (NIHR) Oxford Biomedical Research Centre and NIHR Oxford Health Biomedical Research Centre.


Subject(s)
COVID-19 Vaccines/administration & dosage , Health Communication/methods , Persuasive Communication , Vaccination/psychology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Single-Blind Method , United Kingdom , Young Adult
14.
Social Media + Society ; 7(2):20563051211008817, 2021.
Article in English | Sage | ID: covidwho-1166866

ABSTRACT

We explore the implications of online social endorsement for the Covid-19 vaccination program in the United Kingdom. Vaccine hesitancy is a long-standing problem, but it has assumed great urgency due to the pandemic. By early 2021, the United Kingdom had the world?s highest Covid-19 mortality per million of population. Our survey of a nationally representative sample of UK adults (N?=?5,114) measured socio-demographics, social and political attitudes, media diet for getting news about Covid-19, and intention to use social media and personal messaging apps to encourage or discourage vaccination against Covid-19. Cluster analysis identified six distinct media diet groups: news avoiders, mainstream/official news samplers, super seekers, omnivores, the social media dependent, and the TV dependent. We assessed whether these media diets, together with key attitudes, including Covid-19 vaccine hesitancy, conspiracy mentality, and the news-finds-me attitude (meaning giving less priority to active monitoring of news and relying more on one?s online networks of friends for information), predict the intention to encourage or discourage vaccination. Overall, super-seeker and omnivorous media diets are more likely than other media diets to be associated with the online encouragement of vaccination. Combinations of (a) news avoidance and high levels of the news-finds-me attitude and (b) social media dependence and high levels of conspiracy mentality are most likely to be associated with online discouragement of vaccination. In the direct statistical model, a TV-dependent media diet is more likely to be associated with online discouragement of vaccination, but the moderation model shows that a TV-dependent diet most strongly attenuates the relationship between vaccine hesitancy and discouraging vaccination. Our findings support public health communication based on four main methods. First, direct contact, through the post, workplace, or community structures, and through phone counseling via local health services, could reach the news avoiders. Second, TV public information advertisements should point to authoritative information sources, such as National Health Service (NHS) and other public health websites, which should then feature clear and simple ways for people to share material among their online social networks. Third, informative social media campaigns will provide super seekers with good resources to share, while also encouraging the social media dependent to browse away from social media platforms and visit reliable and authoritative online sources. Fourth, social media companies should expand and intensify their removal of vaccine disinformation and anti-vax accounts, and such efforts should be monitored by well-resourced, independent organizations.

15.
Health Res Policy Syst ; 19(1): 54, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-1166914

ABSTRACT

The COVID-19 pandemic has shed a spotlight on the resilience of healthcare systems, and their ability to cope efficiently and effectively with unexpected crises. If we are to learn one economic lesson from the pandemic, arguably it is the perils of an overfocus on short-term allocative efficiency at the price of lack of capacity to deal with uncertain future challenges. In normal times, building spare capacity with 'option value' into health systems may seem inefficient, the costs potentially exceeding the benefits. Yet the fatal weakness of not doing so is that this can leave health systems highly constrained when dealing with unexpected, but ultimately inevitable, shocks-such as the COVID-19 pandemic. In this article, we argue that the pandemic has highlighted the potentially enormous option value of biomedical research infrastructure. We illustrate this with reference to COVID-19 response work supported by the United Kingdom National Institute for Health Research Oxford Biomedical Research Centre. As the world deals with the fallout from the most serious economic crisis since the Great Depression, pressure will soon come to review government expenditure, including research funding. Developing a framework to fully account for option value, and understanding the public appetite to pay for it, should allow us to be better prepared for the next emerging problem.


Subject(s)
Biomedical Research/economics , COVID-19/epidemiology , COVID-19/prevention & control , Research Support as Topic , Humans , SARS-CoV-2 , State Medicine/economics , United Kingdom/epidemiology
16.
Vaccine ; 39(9): 1452-1462, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1093242

ABSTRACT

A vaccine against tuberculosis (TB), a disease resulting from infection with Mycobacterium tuberculosis (M.tb), is urgently needed to prevent more than a million deaths per year. Bacillus Calmette-Guérin (BCG) is the only available vaccine against TB but its efficacy varies throughout the world. Subunit vaccine candidates, based on recombinant viral vectors expressing mycobacterial antigens, are one of the strategies being developed to boost BCG-primed host immune responses and efficacy. A promising vaccination regimen composed of intradermal (i.d.) BCG prime, followed by intranasally (i.n.) administered chimpanzee adenoviral vector (ChAdOx1) and i.n. or i.d. modified vaccinia Ankara virus (MVA), both expressing Ag85A, has been previously reported to significantly improve BCG efficacy in mice. Effector and memory immune responses induced by BCG-ChAdOx1.85A-MVA85A (B-C-M), were evaluated to identify immune correlates of protection in mice. This protective regime induced strong Ag85A-specific cytokine responses in CD4+ and CD8+ T cells, both in the systemic and pulmonary compartments. Lung parenchymal CXCR3+ KLRG1- Ag85A-specific memory CD4+ T cells were significantly increased in B-C-M compared to BCG immunised mice at 4, 8 and 20 weeks post vaccination, but the number of these cells decreased at the latter time point. This cell population was associated with the protective efficacy of this regime and may have an important protective role against M.tb infection.


Subject(s)
Immunity, Cellular , Tuberculosis Vaccines , Animals , Antigens, Bacterial , BCG Vaccine , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Disease Models, Animal , Immunization, Secondary , Immunologic Memory , Mice , Mycobacterium tuberculosis , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL